
Trees

See Chapter 18 of the text

Trees are the second-most important data structure in
programming, following only lists.

We will think about trees in two different ways.

Graph definition: A tree is a kind of directed graph, so it
has a set of nodes and a set of edges connecting the nodes.
There is one special node called the root. Each node
except for the root in a tree has an incoming edge from
one other node. The root has no incoming edges. There is
a path of edges from the root to every other node. Nodes
that have no outgoing edges are called leaves.

We call the node at the start of an edge a parent node.
The node at the end of this edge is the parent's child.
In this terminology parents can have multiple children, but
children have exactly one parent.

A

B C

D E F

G

Node F is the parent of G and the child of C.

Node A is the root because it has no parent,

Nodes D, E, and G are leaves because they have no children.

We measure the length of a path in the tree by the number
of edges it contains (not the number of nodes). The height
of a node is the longest path from it to a leaf. The height of
the overall tree is the height of its root. The depth of a node
is the length of the path from it to the root. The depth of
the root itself is 0.

A

B C

D E F

G

Node Height Depth

A 3 0

B 1 1

C 2 1

D 0 2

E 0 2

F 1 2

G 0 3

Here is a recursive definition of a tree:

A tree is either empty or it is a root r and 0 or
more non-empty subtrees connected to r by
an edge.

A binary tree is one in which each node can have
at most two children. The children are often
referred to as the left and right children.

Trees are used in many situations:
• Anything hierarchical, like file systems or

administrative structures or Java class structures
can be represented by trees.

• Whenever a program is compiled the compiler
builds a tree representation of the program,
guided by a grammar for the programming
language.

• Games are often represented by trees, where
the root represents the current state of the
game and children represent possible moves.

• Indexes in a database are built on tree
structures.

Since arithmetic operators take two arguments,
one use of binary trees is in representing
expressions. You might represent 3*(4+5) as

*

3 +

4 5

Such a tree has operators in the interior nodes and
numbers in the leaves. There is an easy recursive
algorithm to compute its value -- evaluate the left
child, evaluate the right child and apply the
operator to those values.

So how do we represent trees?

You can use arrays. If there are at most 2 children of
each node, you can put the root at index 0, its children
at index 1 and 2, the children of the node at index 1
could be at indices 3 and 4, and so forth. The children
of the node at index n are at index 2n+1 and 2n+2.
The parent of node at index k is at index (k-1)/2. So
the array [2 9 1 3 5] represents the tree

2

9 1

3 5

If a node could have 3 children the kids of node [n] would
be at [3n+1] [3n+2] and [3n+3]

A more flexible scheme is to use a linked structure. In Lab
5 we will use the following 3 classes:

abstract class BinaryTree<T> {
// methods we want the tree classes to have

}

class EmptyTree<T> extends BinaryTree<T> {
// no data and just trivial methods

}

class ConsTree<T> extends BinaryTree<T> {
T data;
BinaryTree<T> left;
BinaryTree<T> right;
// non-trivial methods

}

